Folding of a large ribozyme during transcription and the effect of the elongation factor NusA.

نویسندگان

  • T Pan
  • I Artsimovitch
  • X W Fang
  • R Landick
  • T R Sosnick
چکیده

We compared in vitro transcription-initiated folding of the ribozyme from Bacillus subtilis RNase P to refolding from the full-length, denatured state by monitoring the appearance of its catalytic activity. At 37 degrees C, Mg(2+)-initiated refolding of the wild type and a circularly permutate ribozyme takes minutes and is limited by a kinetic trap. Transcription by T7 RNA polymerase alters the folding pathway of both RNAs and introduces new kinetic traps. Transcription by the core Escherichia coli RNA polymerase yields the same result, in spite of its 4-fold-slower elongation rate. However, the presence of its elongation factor NusA accelerates more than 10-fold the transcription-initiated folding of the circularly, permutated ribozyme by E. coli RNA polymerase. The effect of NusA likely is caused by its enhancement of transcriptional pausing because NusA did not accelerate transcription-initiated folding using a mutant RNA polymerase that failed to pause or respond to NusA during ribozyme synthesis. We conclude that both transcription and specific pausing therein can alter RNA-folding pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Basis for NusA Stabilized Transcriptional Pausing

Transcriptional pausing by RNA polymerases (RNAPs) is a key mechanism to regulate gene expression in all kingdoms of life and is a prerequisite for transcription termination. The essential bacterial transcription factor NusA stimulates both pausing and termination of transcription, thus playing a central role. Here, we report single-particle electron cryo-microscopy reconstructions of NusA boun...

متن کامل

Nascent RNA length dictates opposing effects of NusA on antitermination

The NusA protein is a universally conserved bacterial transcription elongation factor that binds RNA polymerase (RNAP). When functioning independently, NusA enhances intrinsic termination. Paradoxically, NusA stimulates the function of the N and Q antiterminator proteins of bacteriophage λ. The mechanistic basis for NusA's functional plasticity is poorly understood. Here we uncover an effect of...

متن کامل

Escherichia coli transcription termination factor NusA: heat-induced oligomerization and chaperone activity

Escherichia coli NusA, an essential component of the RNA polymerase elongation complex, is involved in transcriptional elongation, termination, anti-termination, cold shock and stress-induced mutagenesis. In this study, we demonstrated that NusA can self-assemble into oligomers under heat shock conditions and that this property is largely determined by the C-terminal domain. In parallel with th...

متن کامل

Compromised factor-dependent transcription termination in a nusA mutant of Escherichia coli: spectrum of termination efficiencies generated by perturbations of Rho, NusG, NusA, and H-NS family proteins.

The proteins NusA and NusG, which are essential for the viability of wild-type Escherichia coli, participate in various postinitiation steps of transcription including elongation, antitermination, and termination. NusG is required, along with the essential Rho protein, for factor-dependent transcription termination (also referred to as polarity), but the role of NusA is less clear, with conflic...

متن کامل

Transcription is regulated by NusA:NusG interaction

NusA and NusG are major regulators of bacterial transcription elongation, which act either in concert or antagonistically. Both bind to RNA polymerase (RNAP), regulating pausing as well as intrinsic and Rho-dependent termination. Here, we demonstrate by nuclear magnetic resonance spectroscopy that the Escherichia coli NusG amino-terminal domain forms a complex with the acidic repeat domain 2 (A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 17  شماره 

صفحات  -

تاریخ انتشار 1999